MICROSTRUCTURAL CHARACTERIZATION OF FINE WASTE COLLECTOR FOR USE AS REINFORCEMENT IN COMPOSITE MATERIALS
PDF
HTML

Palabras clave

Characterization
Waste
Reinforcement
metal matrix
Oxide

Cómo citar

Romero, M., & Leonir, G. (2019). MICROSTRUCTURAL CHARACTERIZATION OF FINE WASTE COLLECTOR FOR USE AS REINFORCEMENT IN COMPOSITE MATERIALS. Universidad Ciencia Y Tecnología, 23(95), 90-94. Recuperado a partir de https://www.uctunexpo.autanabooks.com/index.php/uct/article/view/251

Resumen

A characterization is presented of the waste obtained in collector sleeves of electric furnaces, called Fine Waste Collector (FWCs), during the ferroalloy production process in order to evaluate the possibilities of use as reinforcement of metal matrix composite materials. The characterization
of the particulate material was carried out through a granulometric classification, in addition with techniques of Optical Microscopy (OM), Scanning Electronic Microscopy (SEM) and chemical microanalysis by EDS, with the purpose of determining size, morphology and elementary chemical composition of the particles, main variables in the evaluation of a particulate material and its use as reinforcement. The results show the presence of mostly spherical morphology particles in a range of size <45 μm, in addition to its chemical composition the presence of important oxides mainly of Mn and Si, typical of the slag of the industrial process is observed. Given the characteristics of the fines, a potential reinforcement for the development of composite materials can be considered.

Palabras Clave: Characterization, waste, reinforcement, oxide, metal matrix.

Referencias

[1]L. Gómez, A. Matos y M. Velandia. “Caracterización de los finos provenientes del sistema de recolección de polvos para estudiar su reciclado en el proceso productivo”. Proyecto Industrial Hevensa-UNEG, pp. 13-15, Marzo 2010.

[2]E. Betancourt. “Preparación de muestras de desechos sólidos domésticos para ser caracterizadas mediante Microscopía Electrónica de Barrido”. Universidad Central de Venezuela. Tesis de Grado Ingeniero Metalúrgico, pp. 39-45, Junio 2011.

[3]C. González, et al. “Obtención y Caracterización del sistema FeMnAlCu”. Revista Colombiana de Física. Vol 43, nº 1,pp. 109-114, Febrero 2014.

[4]R. Palma, A. Sepúlveda y L. Nuñez. “Nuevos métodos de fabricación mediante tecnologías de polvos”. IV Congreso Iberoamericano Chile, pp. 1006-1010, Noviembre 2006.

[5]K. Anil, P. Gokuldoss, et al. “Effect of particle size on microstructure and mechanical properties of Al-based composite reinforced with 10% vol. mechanically alloyed Mg-7.4%Al particles”. Revista Technologies, pp. 3-6, Julio 2016.

[6]C. Drago, et al. “Phases Analysis and Structural Characterization of CuAlMnFe Alloy”. International Conference of Scientific Paper Afases, pp. 503-509, Abril 2013.

[7]H. Wang, Q. Jiang, et al. “Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy”. Mater. Lett., pp. 3509–3513, febrero 2014.

[8]S. Scudino, G. Liu, et al. “Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties”. Acta Mater., pp. 4529–4538, Marzo 2015.

[9]M. Smagorinski, P. Tsantrizos, et al. “The properties and microstructure of Al-based composites reinforced with ceramic particles”. Mater. Sci. Eng. A., pp. 86–90, Julio 2005.

[10]C. Muñoz y B. Pérez. “Análisis Comparativo de las Propiedades Estructurales de las Aleaciones FeMnAlCCu”. Scientia Et Technica, Universidad Tecnológica de Pereira, vol. 11, pp. 157-161, Noviembre 2010.

PDF
HTML

Descargas

La descarga de datos todavía no está disponible.